158

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-27, NO. 2, FEBRUARY 1979

The E-Plane Step-Diaphragm
Junction Discontinuity

THOMAS RUEHLE anp LEONARD LEWIN, SENIOR MEMBER, IEEE

Abstract—A two-to-one E-plane step in rectangular guide is combined
with a capacitive diaphragm at the junction. Singular integral equation
techniques are applied, and the effect of the diaphragm in distorting the
junction field is determined. The junction susceptance is shown to be
augmented by a term corresponding directly to the diaphragm susceptance,
with, rather surprisingly, zero net coupling effect between the step and the
diaphragm.

1. INTRODUCTION

NE of the more complicated waveguide discontinu-

ity geometries that lends itself to solution by the
singular integral equation technique 1s the two-to-one
E-plane step with a capacitive diaphragm in the un-
stepped wall in the plane of the junction. It happens that
no additional difficulty comes from assuming different
media on either side of the junction, and in [1] and [2] the
analysis, in the absence of the diaphragm, the solution
was completed for the quasi-static casec. We examine here
the changes necessary to incorporate the diaphragm, and
the effect on the junction field and equivalent circuit
elements.

II. THE EQUATION FOR THE JUNCTION APERTURE
FIELD

The arrangement is shown in Fig. 1, and following the
method of [2] we express the electromagnetic fields in the
guide in terms of Fourier integrals of the unknown junc-
tion field E(smy/b). Using a well known theorem [2, sec.
1.4.2] the geometry actually investigated is a parallel-plate
geometry, The transition to rectangular waveguide is
achieved by replacing A by

M1-A%/4a%)"?

in the final equations.

By requiring the expressions for the magnetic fields on
either side of the junction to be equal at the junction, an
integral equation for the aperture field is obtained. It is
identical to [2, eq. (8.49)] except that the range of integra-
tion, and the range of validity of the equation, is reduced
because of the reduced aperture due to the presence of the
diaphragm. The altered equation takes the form
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Waveguide step with aperture diaphragm.

Fig. 1.
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where R is the dominant mode reflection coefficient into
incident guide

§1.2=(.‘11,2/51,2)‘/2

Ty, = [(n7/ By =27 /Ao (&1 11/ o 10) | *~nm / b,
for large n

T, ,=[(n7/26)* = 27 /A (€2 1/ o o) |/ *~nm /2B,
for large n

b is the incident guide height, 4 is the diaphragm insert
0,6=(my/b),(my'/b)

and A, is the free-space wavelength. Note that all modes
except the # =0 mode are normally nonprogating.

Proceeding to the quasi-static limit, and differentiating
with respect to # leads, as in [2], to the following singular
integral equation for E(¢)

f” E(¢)
nd/b sin? (3¢) —sin? (1)

[cos 10+ a? cos %0] do=0,

ad/b<8<m (2)
where

a*=14+2¢,/e,=3,  for equal media
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and let

B=(1/7)tan ' a=1/3,

for equal media.

3)

III. SOLUTION OF THE SINGULAR INTEGRAL

EqQuaTiON
In (2) we make the substitutions

u=sin 30
v=sin 3¢
c=cos (7d/2b)
s=sin (nd /2b)

E(¢)=F(v)do/d¢

giving

j;l F(D) [(1_

u - D

092+ o2(1—u? s<u<l.

4)
The key variable change needed to put this into standard
form is

)'/2] dv=0,

(1~uw?)'=c(1-¢
(1- 0?2 =¢(1—n

2)1/2

2)1/2

F(v)=G(n)dn/dv. &)
Then (4) becomes
f‘ f(") (A=) +a2(1-¢2)'? ] dn=0, 0<E<I.
0§
(6)
This is solved as in [2] to give
G(n)=(1+ R) sin pr ﬁ%j} %)

with
H=(1-mn)/(1+n).
Returning to the original variables, and putting R in terms

of the normalized input susceptance of the junction B
gives

E(ﬂ) _ sin B sin (7y / b)
b7 o148+ /28)[sin? (ny /2b) — 521"
HP+H~P
= ®)
— [ sin? (ny /2b) — 5% /
with
_ - [ sin® (my /2b)—s2]'"? -
c+ [sin2 (fzry/Zb)_sz}l/2

In the absence of the diaphragm, s=0, c=1, and H =tan’
[(w/4)(1—yp/b)]. Clearly, the field in (8) is distorted by
the presence of the diaphragm, though its affinity to the
undistorted field is apparent.
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IV. THE JUNCTION SUSCEPTANCE

Equation (2) was derived from (1) by using the quasi-
static forms I, , and T, , and differentiating with respect
to §. The differentiation was necessary in order to handle
the equation with available techniques, but in the process
information was lost, namely, the constant terms in (1).
Accordingly, it is necessary, as in [2], to return to the
undifferentiated form to determine the remaining un-
known B in (8). The method follows closely the details in
the reference; the only difference comes from the variable
change of (5). Since a logarithm is involved, log (1 — v?)!/?
=log ¢ +log (1—7%)!/? and an extra additive term in log ¢
enters. This is the only change, and as a result the normal-
ized junction susceptance becomes, after some manipula-
tions,

B= lez(“ )[gw cot Br—2log 2
—y—¥(1-B)~log c] 9
where

>\=7\0('50/'51)1/2

v is the Euler’s constant=0.5772, and ¥ is the logarithraic
derivative of the gamma function. The initial terms in f3
are the same as for a junction with no diaphragm. For
equal media the expression in square brackets simplifies to

(3/2)log3—-2log2—logc.

Now, from [2, eq. (6.69)] (with s in that equation equal to
c* as used here), the susceptance of a diaphragm of
insertion d into an unstepped guide of height b is B,
where By=—(8b /M) log c. If we consider the diaphragm
in Fig. 1 to be half in a guide of height b and half in a
guide of height 2b we might expect to get, on a rather
naive picture of two noninteracting capacitors in parallel,
a value

4b 4(2b)

Bj=— 5N log cm log ¢
where ¢’ =cos (wd/4b). Very approximately, for small d,
we can write

¢'~1—L(nd/4by}=1~1 ('nd/2b)2/4

~[1=1(nd /26 ae

when Bjas—(2b/A)(2+1) log c. This would be the case
for equal media. Since the capacitances are proportional
to the permittivities, the term (2+ 1) would be replaced by
(2¢; +€,)/ €, leading to the general form of the additive
term in log ¢ in (9), which is, therefore, understandable
from this point of view. But what is truly remarkable
about this formula is that the rest of the equation is
unaffected by the presence of the diaphragm. This means
that although the junction field is distorted by the inser-
tion of the diaphragm the net coupling between the di-
aphragm and the junction is zero. This result was quite
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unexpected. If the formula for a double diaphragm, one
from each side in an unstepped waveguide, is examined, it
is readily seen that the separate capacitance terms do not
simply add. There is a mutual coupling between them, as
would indeed be expected, accompanying the change of
aperture field that one diaphragm induces on the other.
Apparently, this rather general feature is absent in the
two-to-one waveguide step with a junction diaphragm.
Although the field is distorted by the diaphragm, the net
excess charge due to the step is merely redistributed, a
rather unexpected outcome. The formula has been
checked by colleagues who find it correct, but who have
no physical explanation for the finding. It is not known if
it is a freak result coincidental on the two-to-one step
ratio. Since, currently, the singular integral equation tech-
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nique can only handle this case the effect of altering the
step ratio on the diaphragm interaction is not, at the
present time, resolvable.
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Annular Metallic Strip

in a Circular Waveguide with
Incident TE;; Mode

TORAHIKO SUGIURA, MEMBER, 1EEE, AND HIROSHI SUGA, MEMBER, IEEE

Abstract—The principal aims of this paper are twofold: 1) to solve the
problem of the scattering of a thin, perfectly conducting annular strip
suspended in a multimodal circular waveguide in which any number of
TE,,, modes can propagate, and with the aid of this result, 2) to give the
susceptance of the thin annular strip in monomodal circular guide with an
incident TEy; mode. These are treated with a variational approach.

Applying the appropriate Green’s functions to the continuity equations
for the transverse electric field yields a variational expansion for the
scattering matrix elements. This is treated with a Rayleigh-Ritz procedure
and matrix methods.

Curves of normalized susceptance as a function of the free-space
wavelength and the size of the annular metallic strip are shown. These
results are in good agreement with experimental data,

Tables of the scattering coefficients for a typical wavelength versus strip
size are also included.

I. InTRODUCTION

N RECENT YEARS, an experimental millimeter-
wave telecommunication system has been constructed
in our country [1]. The circular waveguide capable of
propagating the dominant circular-electric mode is ideally
suited as a low-loss transmission line in the millimeter-
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Fig. 1. Metallic plate diaphragms of zero thickness and their equiv-
alent circuit (TEy, mode in circular waveguide).

wave region. Inductive metal irises of zero thickness in
such circular waveguides (see Fig. 1) have been investi-
gated and documented [2]-[4]. In these reports, the find-
ing of the susceptance when the TE,, mode was incident
was the main goal.

Problems of susceptance for discontinuities in wave-
guides have been widely studied during the past decade.
Except for a few special discontinuities, exact solutions
are not available and approximate methods must be used.
Of the approximate techniques, the variational and in-
tegral-equation methods are applicable to a wide range of
problems, and produce sufficiently accurate results for
most purposes. The former method is described by Collin
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